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A two-degree-of-freedom (d.o.f.) impact system with proportional damping is considered.
The maximum displacement of one of the masses is limited to a threshold value by a rigid
wall, which gives rise to a non-linearity in the system. A limiting case of a dynamical problem
arising in the mechanical systems with amplitude constraints is investigated. For the
perfectly plastic vibro-impact case, dynamics of a two-degree-of-freedom vibratory system
contacting a single stop is represented by a three-dimensional map. Existence and stability of
period n single-impact motions are analyzed by analytical and numerical methods. It is
shown that the vibro-impact system may exhibit two di!erent types of periodic motions due
to the piecewise property of the map. Transitions of two types of period n single-impact
motions are demonstrated. The singularities of the PoincareH map, caused by grazing
boundary motion of the impact oscillator, are considered. Due to the piecewise
discontinuities and singularities of the map, the vibro-impact system is shown to undergo
period-doubling bifurcations followed by complex sequence of transitions, in which the
period-doubling cascades do not occur and extremely long-periodic and chaotic motions are
generated directly with the motions with grazing boundary occurring. Finally, the in#uence
of system parameters on periodic impacts and global bifurcations is discussed.

( 2001 Academic Press
1. INTRODUCTION

Vibrating systems with clearances between the moving parts are frequently encountered in
a large number of diverse engineering "elds. Impacts occur when the amplitudes of
vibration of some parts of the systems exceed critical values. Research for vibro-impact
problems has important signi"cance on optimization design of machinery with clearances
or gaps, reliability analyses and noise suppression, etc. Because the physical process during
impacts is strongly non-linear and discontinuous, the vibro-impact systems can exhibit very
rich and complicated dynamic behaviour. In recent years, many new problems of theory
have been advanced in research of vibro-impact problems so that it becomes a new subject
0022-460X/01/100837#22 $35.00/0 ( 2001 Academic Press
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on non-linear dynamics. Some researches, including singularity [1}8], &&inelastic11
vibroimpacts [9}12], high-codimension bifurcation [13] and quasi-periodic impacts
[14}18], were unfolded for the vibro-impact systems. Dynamics and bifurcations of
one-degree-of-freedom plastic vibro-impact systems were studied in references [9}11]. For
the inelastic vibro-impact case, Shaw and Holmes [9, 10] studied the motions of a oscillator
with harmonic excitation and a constraint by using a one-dimensional map, which is
represented by piecewise maps on circle. Analysis of this map shows that stable periodic
orbits exist at almost all forcing frequencies but that transient non-periodic or chaotic
motions can also occur. Xie [11] represented the dynamics of one-degree-of-freedom impact
hammer by a one-dimensional map on circle and described the properties of the map. It is
found that the bifurcational behaviours of the impact hammer were di!erent from that of
usual one-dimensional consecutive maps [19]. But the interruption of period-doubling
cascades and the transition to chaos were not analyzed for the one-degree-of-freedom
impact hammer in reference [11].

The plastic vibro-impact systems considered in references [9}11] are all single-degree-
of-freedom ones. But the vibro-impact systems in engineering "elds are usually
multi-degree-of-freedom ones. In the paper, we consider a two-degree-of-freedom system
with harmonic excitations and a constraint. Peterka [12] and AidanpaK aK [20] have studied
dynamics and bifurcations of the mechanical model for elastic vibro-impact case. The
purpose of the present study is to focus attention on the periodic motions and global
bifurcations of such system in the perfectly plastic vibro-impact case. On the perfectly
plastic impact condition, dynamics of the system is represented by a three-dimensional map,
which is of piecewise property and singularities caused by the motion with grazing
boundary. The in#uence of singularities on global bifurcations and the transitions to chaos
is elucidated. It is found that the vibro-impact system goes through complicated dynamic
evolution beyond period-doubling bifurcations with increase in the excitation frequency.
Period-doubling bifurcations of periodic motions with one impact are commonly existent,
but the period-doubling cascades are non-existent under a smooth change in the excitation
frequency. After period-doubling bifurcations of periodic motions with single-impact occur,
the system may exhibit the motions with grazing boundary so that extremely long periodic
and chaotic motions are generated immediately. The phenomena of grazing boundary were
analyzed in the research of dynamics of elastic vibro-impact systems [1, 5]. The in#uences of
system parameters such as distribution of mass and sti!ness, damping ratio and clearance
on periodic impacts and global bifurcations are discussed brie#y.

2. PERIODIC MOTIONS WITH SINGLE IMPACT

The mechanical model for a two-degree-of-freedom vibrator with masses M
1

and M
2

is
shown in Figure 1. The masses are connected to linear springs with sti!nesses K

1
and K

2
.

The excitations on both masses are harmonic with amplitudes P
1

and P
2
. The excitation
Figure 1. Schematic of the two-degree-of-freedom impact oscillator.
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frequency X and the phase q are the same for both masses. The mass M
1

impacts against
a rigid surface A when its displacement X

1
(t) equals the gap B. The impact is described by

a coe$cient of restitution R. Here a special case of perfectly plastic impact is considered, in
which the coe$cient of restitution R equals zero. When the mass M

1
impacts against the

stop A, kinetic energy of the mass M
1

is dissipated on impact and the mass M
1

essentially
sticks to the stop. There is no elastic rebound. However, the forces, which act on the mass
M

1
, may drive it o! the stop again. Then the system begins to motion in new initial

conditions and the mass M
1

will strike the stop again, thus and so reciprocating motions.
Damping in the mechanical model is assumed as proportional damping of the Rayleigh
type, which in this case implies K

1
/K

2
"C

1
/C

2
.

The motion processes of the system, between any two consecutive impacts, are
considered. Between any two consecutive impacts, the time ¹ is set to zero directly at the
instant when the former impact "nishes, and the phase angle q is used only to make
a suitable choice for the origin of time in the calculation. The state of the vibro-impact
system, immediately after impact, becomes initial conditions of the system in the subsequent
process of motion. Let X

20
and XQ

20
represent, respectively, displacement and velocity of the

mass M
2

at the instant of the former impact. The velocity of the mass M
1

varies from XQ
1~

and XQ
1`

"0 at the moment when it impacts the stop. When XQ
1~

and XQ
1`

represent the
impacting mass velocities of approach and departure at the instant of impact respectively.
Let F

1
represent a resultant force, which consists of spring restoring force, damping force

and sinusoidal excitation acted on the mass M
1
, i.e.,

F
1
"K

1
(X

2
!X

1
)#C

1
(XQ

2
!XQ

1
)#P

1
sin(X¹#q). (1)

If the resultant force F
1
, at the instant when the former impact is over, is in the positive

direction, i.e.,

F
1
"K

1
(X

20
!B)#C

1
XQ

20
#P

1
sin q'0, (2)

the force simply push the mass M
1

against the stop, with which it remains in contact. The
two-degree-of-freedom vibro-impact system becomes a single-degree-of-freedom oscillator
subjected to sinusoidal excitation, and its di!erential equation of motion is

M
2
XQ

2
#(C

1
#C

2
)XQ

2
#(K

1
#K

2
)X

2
!K

1
B"P

2
sin(X¹#q). (3)

Until the resultant force F
1

changes its direction (sign), the force begins to push the mass
M

1
away from the stop again, and the single-degree-of-freedom oscillator becomes

a two-degree-of-freedom vibro-impact system. Let ¹
s
represent the time during which the

mass M
1

is in contact with the stop. If there exists e
1
'0, and

K
1
(XM

20
!B)#C

1
XM Q

20
#P

1
sin(X¹#q)"0, ¹"¹

s
, (4)

K
1
(X

2
!X

1
)#C

1
(XQ

2
!XQ

1
)#P

1
sin(X¹#q)(0, ¹

s
(¹(¹

s
#e

1
, (5)

then the forcing F
1

will drive the mass M
1

o! the stop. Here XM
20

and XM Q
20

represent,
respectively, displacement and velocity of the mass M

2
at the time ¹"¹

s
.

If the resultant force F
1

acted on the mass M
1

which is in the negative direction
immediately after impact, i.e.,

K
1
(X

20
!B)#C

1
XQ

20
#P

1
sin q(0, (6)

then the force F
1

immediately drives the mass M
1

o! the stop. The mass M
1

spends no time
stuck to the stop, and moves in the opposite direction with initial velocity XQ

1
"0.
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A special case must be considered, in which the resultant force F
1

equals zero when the
mass M

1
impacts the stop. If F

1
changes in positive direction immediately at the instant

when the impact is over, then the mass M
1

will stick to the stop; otherwise the force F
1

will
drive it o! the stop immediately.

Between two consecutive impacts, the di!erential equations of motion, written in the
non-dimensional form, are given by

xR
1
"xR

1~
(x

1
"b, t"0

~
), xR

1
"xR

1`
"0 (x

1
"b, 0

`
)t)t

s
), (7)

k
m
xK
2
#2f(1#k

c
)xR

2
#(1#k

k
)x

2
!b"fM

20
sin(ut#q) (0

`
)t)t

s
), (8)

C
1

0

0

k
m
D G

xK
1

xK
2
H#C

2f
!2f

!2f
2f(1#k

c
)D G

xR
1

xR
2
H#C

1

!1

!1

1#k
k
D G

x
1

x
2
H

(9)

"G
fM
10
fM
20
H sin(ut#q#ut

s
) (t

s
)t)t

s
#t

f
).

In Equations (7)}(9), a dot && ) '' denotes di!erentiation with respect to the non-dimensional
time t, t

f
denotes the #ight time of the mass M

1
, between two successive impacts, t

s
is the

non-dimensional expression of the time ¹
s
. t

s
#t

f
denotes the time interval between two

successive impacts, where the non-dimensional quantities

k
m
"

M
2

M
1

, k
k
"

K
2

K
1

, k
c
"k

k
, fM

20
"

P
2

P
1
#P

2

, fM
10
"1!fM
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, u"XS

M
1

K
1

, (10)

t"¹S
K

1
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1

, f"
C

1
2JK

1
M

1

, b"
BK

1
P
1
#P

2

, x
1
"

X
i
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1
P
1
#P

2

, xR
i
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XQ
i
JM

1
K

1
P
1
#P

2

, i"1, 2

have been introduced.
Formulae (2)} (6) are rewritten in non-dimensional form

(x
20
!b)#2fxR

20
#fM

10
sin q'0, (11)

(xN
20
!b)#2fxNR

20
#fM

10
sin(ut#q)"0,

(x
2
!x

1
)#2f(xR

2
!xR

1
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10
sin(ut#q)(0,

t"t
s
,

t
s
(t(t

s
#e@

1
,

(12)

(x
20
!b)#2fxK

20
#fM

10
sin q(0, (13)

where xN
20

and xN R
20

represent, respectively, non-dimensional displacement and velocity of the
mass M

2
at the time t"t

s
.

For 0
`
)t)t

s
, The two-degree-of-freedom system contacting a single stop becomes

a single-degree-of-freedom oscillator subjected to sinusoidal excitation, and the general
solutions of equation (8) are given by

x
1
(t)"b, xR

1
(t)"0,

x
2
(t)"e~fu2

0t(c cos u
d
t#d sin u

d
t)#A

0
sin (ut#q)#B

0
cos(ut#q)#x

0
,

xR
2
(t)"e~fu2

0t((du
d
!cfu2

0
) cos u

d
t!(dfu2

0
#cu

d
) sin u

d
t)#A

0
u cos(ut#q)

!B
0
u sin(ut#q), (14)
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where u2
0
"(1#k

k
)/k

m
, u

d
"u

0
J1!f2u2

0
, x

0
"b/(1#k

k
), and

c"x
20
!x

0
!A

0
sin q!B

0
cos q, (15)

d"
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#fu2

0
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0
)!(A

0
fu2

0
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0
u) sin q!(B

0
fu2

0
#A

0
u) cos q

u
d

, (16)

A
0
"

(u2
0
!u2) fM

0
(u2

0
!u2)2#(2fuu2

0
)2

, B
0
"

2fuu2
0
fM
0

(u2
0
!u2)2#(2fuu2

0
)2

, (17)

where fM
0
"fM

20
/k

m
.

Let t represent the canonical model matrix of equations (9). u
1

and u
2

denote the
eigenfrequencies of the system as impacts do not occur. Taking t as a transition matrix,
equations of motion (9), under the change of variables

X"tm, (18)

becomes

ImG#CmQ #Km"FM sin(ut#q), (19)

where X"(x
1
, x

2
)T, m"(m

1
, m

2
)T, I is an unit matrix of degree 2]2, C and K are diagonal

matrices, and C"diag[2mu2
1
, 2fu2

2
], K"diag[u2

1
, u2

2
], F"( fM

1
, fM

2
)T"tTP, P"(1!fM

20
, fM

20
)T.

m is the response of the system for t3[t
s
, t

s
#t

f
], in the canonical co-ordinates. Equations

of motion (9) are resolved by using formal co-ordinate and modal matrix approach. The
general solutions of equations (9) take the form

x
i
(t)"

2
+
j/1

t
ij
(e~gj(t~ts) (a

j
cos u

dj
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s
)#b
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s
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j
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j
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2
+
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a
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s
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j
u sin(u (t!t

s
)#q#b)) (i"1, 2),

where t
s
)t)t

s
#t

f
, b"ut

s
, t

f
denotes the #ight time of the mass M

1
between two

successive impacts. t
ij

are the elements of the canonical modal matrix t, g
j
"fu2

j
,

u
dj
"Ju2

j
!g2

j
, a

j
and b

j
are the constants of integration which are determined by the

initial condition and modal parameters of the system. A
j

and B
j

are the amplitude
parameter, which are given by

A
j
"

1
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A

u#u
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j
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B
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g
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j
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j
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In the extended phase space (Figure 2), the non-smooth curves x
1
(t) (ABCDE) and

xJ
1
(t) (A@B@C@D@E@) indicate, respectively, the period n single-impact orbit of the mass M

1
and

its disturbed motion. The governing points on the phase orbits show the boundary and
continuity conditions of the vibro-impact system. There are generally two ways to choose
a PoincareH section: pN , pLR4]S,

pN "M(x
1
, xR

1
, x

2
, xR

2
, h)3R4]S, h"0 mod(2n)N, (24)

p"M(x
1
, xR

1
, x

2
, xR

2
, h)3R4]S, x

1
"b, xR

1
"xR

1`
"0N . (25)

Because there exists singularity of the PoincareH map caused by the motions with grazing
boundary in vibro-impact systems [1, 2], it is di$cult to observe the motions with grazing
boundary in the PoincareH section pN . In this paper, we choose the section p to establish the
PoincareH map. By virtue of equations (7)}(9), the PoincareH map can be established as

DX@"f (v, DX), (26)

where v is a real parameter, v3R1, DX"(Dx
2
, DxR

2
, Dq)T, DX@"(Dx@

2
, DxR @

2
, Dq@)T are the

disturbed vectors in the hyperplane p.
Under suitable system parameter conditions, the system given in Figure 1 can exhibit

periodic behaviour. The periodic behaviour means that if the dimensionless time t is set to
zero directly after an impact, it becomes 2nn/u just before the next impact. Here n stands for
the number of forcing cycles between two consecutive impacts. After the origin of
h-co-ordinate is displaced to an impact point o

1
, the determination of the period

n single-impact motions is based on the fact that they satisfy the following set of periodicity
and matching conditions:

x
1
(t)"b (0)t)t

s
), x

1
(t
s
#t

f
)"b, xR

1
(t)"0(0)t)t

s
), xR

1`
(t
s
#t

f
)"0,

x
2
(t
s
)"xN

20
, x

2
(0)"x

2
(t
s
#t

f
)"x
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, xR

2
(t
s
)"xNR

20
, xR

2
(0)"xR

2
(t
s
#t

f
)"xR

20
,

u(t
s
#t

f
)"2nn, t"0 mod 2nn/u, q"q

0
(mod 2nn/u), (27)

where X*"(xR
20

, x
20

, q
0
)T denotes a "xed point of period n single-impact orbit in PoincareH

section p. We represent periodic motions of the system contacting a single stop by symbol
n}p, n and p representing, respectively, the number of the forcing cycle and the number of
impacts.
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Period n single-impact solution of the vibro-impact system may be written in the form

x
1
(t)"b (0)t)t

s
),

x
2
(t)"e~fu2

0t (c cosu
d
t#d sin u

d
t)#A

0
sin(ut#q

0
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0
cos(ut#q

0
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s
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x
i
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2
+
j/1

t
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(t!t

s
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s
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#b)
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s
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0
#b)) (t

s
)t)2nn/u) (i"1, 2), (28)

which correspond to one impact during n cycle of the forcing, i.e. t"0 mod(2nn/u). In the
period n single-impact motions, the mass M

1
impacts the stop once during n cycle of the

forcing. When the mass M
1

impacts the stop, it is pushed away from the stop by the
resultant force F

1
immediately, or it is pushed against the stop by the force F

1
until the force

changes its sign. The former case, in which M
1

is pushed away from the stop by the force
immediately, is represented by the symbol (I); the latter is represented by (II). Two
de"nitions are required: n!I!(I) represents a type of motion, in which there exists one
impact during n cycle of the forcing and M

1
does not stick to the stop; n!1!(II)

represents another type of motion, in which there exists one impact during n cycle of the
forcing and the mass M

1
remains in contact with the stop until the resultant force F

1
change

its sign.

3. POINCARE MAPS OF PERIOD N SINGLE-IMPACT ORBITS

We "rst consider the perturbed motion of n!1!(II) periodic orbit to determine the
equation of map. For simplicity of notation, the origin of time is chosen at the impact point.
The origin of h-co-ordinate is displaced to an impact point o

2
in Figure 2. Here

XI "(xJ
1
, xN

2
)T and XI Q "(xJR

1
, xJR

2
)T represent displacements and velocities in the perturbed

motion respectively. Between two consecutive impacts, for xJ
1
)b, the solutions of the

perturbed motion are given by
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For the disturbed motion shown in Figure 2, the dimensionless time t is set to zero
directly immediately after impact, it becomes (2nn#Dh)/u just before the next impact, and
Dh"Dq@!Dq. Letting t

e
"(2nn#Dh)/u, the boundary conditions at two successive

impact points are given by
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Inserting boundary conditions (31) into solutions (29) of the perturbed motion for t"0,
we can solve for
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xN
20
#DxN

20
"e~fu2

0(ts`
Dts)(cJ cos u

d
(t
s
#Dt

s
)#dI sinb u

d
(t
s
#Dt

s
))

(35)
#A

0
sin(u (t

s
#Dt

s
)#q

0
#Dq)#B

0
cos(u(t

s
#Dt

s
)#q

0
#Dq)#x

0
,

xNR
20
#DxNR

20
"e~fu2

0(ts`
Dts) ((dI u

d
!cJ fu2

0
) cos u

d
(t
s
#Dt

s
)!(dI fu2

0
#cJ u

d
) sin u

d
(t
s
#Dt

s
))

(36)
#A

0
u cos(u(t

s
#Dt

s
)#q

0
#Dq)!B

0
u sin(u(t

s
#Dt

s
)#q#Dq),

aJ
1
"

1

D
(t

22
b!t

12
(xN

20
#DxN

20
)!DA

1
sin(q

0
#Dq#b#Db)!DB

1
cos(q

0
#Dq#b#Db)),

(37)

aJ
2
"

1

D
(t

11
(xN

20
#DxN

20
)!t

21
b!DA

2
sin(q

0
#Dq#b#Db)!DB

2
cos(q

0
#Dq#b#Db),

(38)

bI
1
"

1

Du
1

(t
22

g
1
b!t

12
(xNR

20
#DxNR

20
#g

1
xN
20
#g

1
DxN

20
)!D(A

1
u#g

1
B
1
)

(39)
]cos(q

0
#Dq#b#Db)#D(B

1
u!g

1
A

1
) sin(q

0
#Dq#b#Db)),

bI
2
"

1

Du
2

(!t
21

g
2
b#t

11
(xNR

20
#DxNR

20
#g

2
(xN

20
#DxN

20
))!D(A

2
u#g

2
B
2
)

(40)
]cos(q

0
#Dq#b#Db)#D(B

2
u!g

2
A

2
) sin(q

0
#Dq#b#Db)),

where D"D t D.
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Applying boundary conditions (31) to equations (12) for t"tJ
s
, we can obtain

xN
20
#DxN

20
!b#2f (xNR

20
#DxNR

20
)#fM

10
sin(u(t

s
#Dt

s
)#q

0
#Dq)"0. (41)

De"ning a function h (Dx
20

, DxR
20

, Dq, Dt
s
) as

h (Dx
20

, DxR
20

, Dq, Dt
s
)"xN

20
#DxN

20
!b#2f (xNR

20
#DxNR

20
)

#fM
10

sin(u(t
s
#Dt

s
)#q

0
#Dq)"0. (42)

Suppose Lh/LDt
s
D
(0,0,0,0)

O0, according to the implicit function theorem, equation (42) can
be solved for

Dt
s
"Dt

s
(Dx

20
, DxR

20
, Dq), Dt

s
(0, 0, 0)"0. (43)

Let DX"(y
1
, y

2
, y

3
)T"(Dx

20
, DxR

20
, Dq)T, it is easy to obtain the following derivatives:

LDt
s

Ly
j

"!

Lh

Ly
j
N

Lh

LDt
s

, j"1, 2, 3. (44)

Using solutions (29) of the perturbed motion, we can obtain

b"
2
+
j/1

t
1j

mI
j
(t
e
). (45)

De"ne a function g (Dx
20

, DxR
20

, Dq, Dt
s
, Dt

f
) as

g (Dx
20

, DxR
20

, Dq, Dt
s
, Dt

f
)"

2
+
j/1

t
1j

mI
j
(t
e
)!b"0. (46)

Suppose Lg/LDt
f
D
(0,0,0,0)

O0, according to the implicit function theorem, equation (46) can
be solved for

Dt
f
"Dt

f
(Dx

20
, DxR

20
, Dq, Dt

s
), Dt

f
(0, 0, 0, 0)"0. (47)

Using equations (43) and (47), we have

LDt
f

Ly
j

"!A
Lg

Ly
j

#

Lg

LDt
s

)
LDt

s
Ly

j
BN

Lg

LDt
f

( j"1, 2, 3). (48)

Inserting formulae (37)}(40) and boundary conditions (31) to solutions (29) of the perturbed
motion, we get "nally the PoincareH map, corresponding to n!1!(II) orbit, which is given
by

Dx@
20
"

2
+
j/1

t
2j

mI
j
(t
e
)!x

20
, DxR @

20
"

2
+
j/1

t
2j

mI Q
j
(t
e
)!xR

20
, Dq@"Dq#uDt

s
#uDt

f
,

(49)
where

mI Q
j
(t)"e~gj(t~t

J
s)((bI

j
u

dj
!g

j
aJ
j
) cos u

dj
(t!tJ

s
)!(g

j
bI
j
#aJ

j
u

dj
) sin u

dj
(t!tJ

s
))

(50)

#A
j
u cos(u (t!tJ

s
)#q

0
#Dq#b#Db)!B

j
u sin(u (t!tJ

s
)#q

0
#Dq#b#Db).



846 G. W. LUO E¹ A¸.
Introducing solutions (43) and (47) to map (49), we have

Dx@
20
"fI II

1
(Dx

20
, DxR

20
, Dq, Dt

s
, Dt

f
) Def
" f II

1
(Dx

20
, DxR

20
, Dq),

DxR @
20
"fI II

2
(Dx

20
, DxR

20
, Dq, Dt

s
, Dt

f
) Def
" f II

2
(Dx

20
, DxR

20
, Dq),

Dq@"Dq#uDt
s
#uDt

f
Def
" f II

3
(Dx

20
, DxR

20
, Dq). (51)

Let < denote some neighbourhood of the origin in R3, map (49) f II
v

:<PR3 may be
expressed brie#y as

DX@"f II(v, DX), (52)

in which v is a real parameter, v3R1, DX"(Dx
20

, DxR
20

, Dq)T, DX@"(Dx@
20

, DxR @
20

, Dq@)T,
f II (v, DX)"( f II

1
, f II

2
, f II

3
)T.

Linearizing map (51) at the n!1!(II) "xed point results in the matrix

Df II(v, 0)"A
L f II

1
LDx

20

Lf II
1

LDxR
20

Lf II
1

LDq

L f II
2

LDx
20

Lf II
2

LDxR
20

Lf II
2

LDq

L f II
3

LDx
20

Lf II
3

LDxR
20

Lf II
3

LDq
B
(v,0,0,0)

, (53)

where the elements of the matrix are given by

L f II
i

Ly
j

"

L fI II
i

Ly
j

#

L fI II
i

LDt
s

LDt
s

Ly
j

#

L fI II
i

LDt
f

LDt
f

Ly
j

(i, j"1, 2, 3). (54)

If the system can exhibit periodic motion of n!1!(I) for some system parameter
regions, the resultant force F

1
, at the instant of impact, satis"es condition (6). Periodic

solution of n!1!(I) orbit and its PoincareH map can be derived by using analytical
method (see Appendix A). The PoincareH map, corresponding to n!1!(I) orbit, may be
expressed brie#y by

DX@"f I(v, DX), (55)

where l3R1, DX"(Dx
20

, DxR
20

, Dq)T, DX@"(Dx@
20

, DxR @
20

, Dq@)T, f I (v, DX)"( f I
1
, f I

2
, f I

3
)T.

There existing two types of period n single-impact motions in the plastic vibro-impact
system, the map of period n single-impact orbit consists of two piecewise parts, and that
both are all three-dimensional and have the same variables. The n}1}(I) periodic motion
may be taken as a special case of n!1!(II) periodic motion, i.e., the case of t

s
"0. For

convenience of notation, we use f (v, DX) to denote the PoincareH map of period
n single-impact orbit in plastic vibro-impact case, i.e.,

f (v, DX)"G
f II(v, DX),

f I (v, DX),

v corresponding to n!1!(II) orbit,

v corresponding to n!1!(I) orbit.
(56)

4. LOCAL STABILITY FOR n!1 ORBIT

The local stability of period n single-impact orbits is determined by computing
eigenvalues of Df (v, 0). If all eigenvalues of Df (v, 0) are inside the unit circle, then the
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corresponding periodic orbit and "xed points are stable; otherwise, they are unstable. If the
eigenvalues of Df (v, 0) with the largest modules lie on the unit circle when v"v

c
(v

c
is

a bifurcation value), then there is the possibility of bifurcations taking place. In general,
bifurcations occur in various ways according to the number of eigenvalues on the unit circle
and their position on the unit circle, resulting in qualitative changes of the system dynamics.
If Df (v, 0) has a pair of simple complex non-real eigenvalues, crossing the unit circle as
v passes v

c
; the remainder of the spectrum of Df (v,0) will be assumed to stay strictly inside

the unit circle, it is possible that Hopf bifurcation of period n single-impact orbit may take
place. If Df (v,0) has a real eigenvalue, crossing the unit circle from point (!1, 0) as v passes
v
c
; the remainder of the spectrum of Df (v,0) are strictly inside the unit circle,

period-doubling bifurcation of period n single-impact orbit can occur.
There exist two types of period n single-impact motions in the system, so the PoincareH

map of period n single-impact orbits is more complicated than that of the elastic impact
system [18, 20]. Equations of n!1!(II) "xed point and sticking time t

s
may be

determined by combining boundary conditions (27) to expressions (24) of n!1!(II)
periodic motion, but the equations are transcendental ones. For this reason, the expressions
of n!1!(II) periodic motion and PoincareH map of the system shown in Figure 1 cannot
be obtained in closed form like those of single-degree-of-freedom systems in inelastic
vibro-impact case [9}11]. The n!1!(I) periodic motion and PoincareH map can be
determined analytically. In the linearizing matrix Df II(v,0) of the map f II (v, DX), only
n!1!(II) "xed point X*"(x

20
, x

20
, q

0
)T and sticking time t

s
are unknown, but stable

"xed point X*"(x
20

, x
20

, q
0
)T and t

s
may be obtained by numerical simulation.

Eigenvalues of Df II(v,0), corresponding stable n!1!(II) orbit, may be computed by
inserting X*"(x

20
, x

20
, q

0
)T and t

s
obtained by numerical computation, into matrix (55).

The bifurcating value of period n single-impact orbit may be determined approximately via
this way. When control parameter v varies to some critical value v

c
, the period

n single-impact orbit will change its stability, and eigenvalues of Df (v,0) with largest models
are on the unit circle at the corresponding critical value v

c
.

The vibro-impact system with system parameters k
m
"1, k

k
"1, f"0)1, b"0, fM

20
"0,

v"u has been chosen to be analyzed. It is shown by numerical results that the system
shown in Figure 1 can exhibit stable period 1 single-impact orbit for u3[1)3, 1)817465]. As
u"1)81749, the period 1 single-impact orbit of the system has changed its stability and
stable period 2 two-impact orbit are created. Local bifurcation diagram of n!1 orbit is
plotted in the (ut

f
/2n, u(t

f
#t

s
)/2n and xR

1~
versus u) planes as shown in Figure 3, from

which we can observe transition from n!1!(II) motion to n!1!(I) one with increase
in control parameter u. In Figure 3, there are three windows of periodic motions with single
impact for u"0)5!4)5, i.e., n"1, 2, 3. In Figure 3(a), the parts of oblique lines
Figure 3. Local bifurcation diagram of n!1 orbits for the system with k
m
"1, k

k
"1, f"0)1, b"0, fM

20
"0,

v"u, (n"1, 2, 3).



Figure 4. Variation of eigenvalues inside the unit circle: (a) n"1, u3[1)3, 1)817465]; (b) n"2, u3[2)05,
2)913915].
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correspond to n!1!(II) orbits, the parts of level lines to n!1!(I) orbits. It is certain
that period n single-impact orbit develops in a regular manner as u is increased. In the
parameter region of stable n!1 orbit, there exists stable n!1!(II) orbit in low u region,
then transition from n!1!(II) orbit to n!1!(I) one occurs with increase in u. Taking
n"1 and inserting 1}1 "xed points X*"(x

20
, xR

20
, q

0
)T and sticking time t

s
obtained by

numerical computation for u3[1)3, 1)817465], into matrix (53), we can compute the
eigenvalues of Df (u, 0) on the same parameter interval. It is shown that all eigenvalues of
Df (u,0) stay strictly inside the unit circle for u3[1)3, 1)817465], with j

1
being real, j

2
and

j
3

being a pair of complex conjugate eigenvalues. As u"1)817465, j
1
"!0)99999961 and

D j
2,3

D(1, j
1

is extremely close to !1, the parameter value u"1)817465 may be
approximately assumed to be a period-doubling bifurcation value of 1}1 orbit. The
variation of the eigenvalues of Df (u,0) is shown for u3[1)3, 1)817465] in Figure 4(a), in
which D j

1
D increases with increase in u.

The system has stable period 2 single-impact orbits for u3[2)05, 2)913915]. When
u"2)91393, the period 2 single-impact orbit has changed its stability and stable period
4 two-impact orbit is created. Taking n"2 and inserting 2!1 "xed points
X*"(x

20
, x

20
, q

0
)T and t

s
obtained by numerical computation, into matrix (53), we "nd

that all eigenvalues of Df (u,0) stay strictly inside the unit circle for u3[2)05, 2)913915],
with real eigenvalue j

1
and a pair of complex conjugate eigenvalues j

2
and j

3
. As

u"2)913915, j
1
"!0)99999936, and D j

2,3
D(1, j

1
is extremely close to !1, so the

parameter value u"2)913915 may be approximately assumed to be a period-doubling
bifurcation value of period 2 single-impact orbit. The variation of the eigenvalues of
Df (u,0) is shown for u3[2)05, 2)913915] in Figure 4(b). Here we compute only eigenvalues
of Df (u,0) corresponding stable n!1 orbits by the way, thus stable n!1 orbits, obtained
by numerical simulation, are veri"ed by the analyses of eigenvalues, and approximate
bifurcation values of period-doubling are determined.

5. GLOBAL BIFURCATIONS

To bring out the essential dynamical features of the system, the bifurcational behaviours
are studied to unfold the dynamic evolution of the system beyond period-doubling
bifurcations. The system, with system parameters k

m
"1, k

k
"1, f"0)1, b"0, fM

20
"0, has

been chosen for analysis, and the excitation frequency u is taken as a control parameter.
Some results are presented in the form of bifurcation diagrams, periodic response and phase
plane diagrams. In Figures 5}11 periodic response (xR

1
!ut) and their phase plane portraits

(xR
1
!x

1
) are plotted. As u3[2)05, 2)49015), the system can exhibit stable period



Figure 5. 2!1!(II) periodic motion (u"2)1).

Figure 6. 2!1!(I) periodic motion (u"2)5).

Figure 7. 4!2!(I) periodic motion (u"2)921).
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2 single-impact orbit, corresponding 2!1!(II) motion. This implies that 2!1 orbit in
the interval is degenerate in the sense that the mass M

1
simply follows the stop until the

resultant force F
1

acted on the mass M
1

change its sign and begins to push the mass M
1

away from the stop. As u is increased further, the 2!1!(II) orbit vanishes and 2!1!(I)
orbit is generated. For u3[2)49015, 2)913915), the system has stable 2!1!(I) orbit.
A stable 2!1!(II) response of the mass M

1
is shown for u"2)1 in Figure 5. Response

and phase plane portraits of stable of 2!1!(I) orbit are plotted for u"2)5 in Figure 6.
As we have known, for the 2!1!(I) orbit at u"u

c
"2)913915, Df (u,0) has a real

eigenvalue j
1

extremely close to the point (!1, 0). When u passes u
c
, 2!1!(I) orbit has

changed its stability, and stable 4!2!(I) periodic orbit bifurcates from 2!1!(I) one.
Response and phase plane portraits of the mass M

1
are shown for u"2)921 in Figure 7,



Figure 8. 4!2!(II) periodic motion with grazing boundary (u"2)924938).

Figure 9. 3!2!(II) periodic motion (u"3)02).
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from which we "nd that the system can exhibit stable 4!2!(I) orbit at u"2)921. As
u"2)922423, the system begins to exhibit 4!2!(II) orbit, which means that the mass
M

1
is stuck to the stop for duration t

s
after some impact and the original system becomes

a single-degree-of-freedom oscillator with the mass M
2
. As u is increased to u"2)924938,

the system exhibits the 4!2!(II) orbit with &&grazing boundary'', i.e., the mass M
1
impacts

the stop with zero velocity (i.e., xR
1~

"0), which results in singularity of PoincareH map and
qualitative changes of the system dynamics. Such a case of 4!2!(II) orbit with grazing
boundary is shown for u"2)924938 in Figure 8. Because of 4!2!(II) orbit with grazing
boundary, there does not exist 8!4!(II) motion bifurcating from 4!2!(II) orbit, as we
will see in Figures 12 and 14, period-doubling cascades of 2!1 orbit do not occur. With the
4!2!(II) orbit with grazing boundary occurring, the 4!2!(II) periodic orbit
undergoes a sequence of transitions that change it to 3!2!(II) orbit with increase in u.
An orbit of 3!2!(II) is given for u"3)02 in Figure 9. As u is increased to u"3)03419,
grazing boundary phenomenon occurs again so as to result in a transition that changes
3!2!(II) orbit to 3!1!(II) one. Such a case of transition is shown in Figures 9}11, and
the phase plane portrait of the 3!1!(II) orbit with grazing boundary is shown in Figure
10. With further increase in control parameter u, 3!1!(II) orbit disappears, sticking time
t
s
of the mass M

1
has shrunk to zero and 3!1!(I) orbit is created. A bifurcation diagram

of period 2 single-impact orbit is plotted in the (ut
f
/(2n) and xR

1~
versus u) planes as shown

in Figure 12. As we can see in Figure 12, the period-doubling bifurcation of period
2 single-impact orbit is existent, but the period-doubling cascades is non-existent under
a smooth change in the excitation frequency. After period-double bifurcation of period
2 single-impact orbit occurs, the system exhibits the motions with grazing boundary, which
result in the period-doubling cascades of period 2 single-impact orbits non-existent, so that



Figure 10. 3!1!(II) periodic motion with grazing boundary (u"3)03419).

Figure 11. 3!1!(II) periodic motion (u"3)1).

Figure 12. Doubling-period bifurcation diagram for the system with k
m
"1, k

k
"1, f"0)1, b"0, fM

20
"0,

u"2)87&3)065.
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extremely long periodic and chaotic motions are generated immediately. Such a route to
chaos via grazing boundary is apparent in Figure 12. A bifurcation diagram for period
n single-impact orbit is plotted for u"0.5}10 in the (ut

f
/2n and xR

1~
versus u) planes as

shown in Figure 13. For other n!1 orbits (n"1, 3, 4,2 , 7), as we have computed and
analyzed in Figure 13, transitions of two types of periodic motions and dynamic evolution
beyond period-doubling bifurcations are similar to those of 2!1 orbit. By analyses of
numerical results for u"0.5}10, the global bifurcation process of n!1 orbit
(n"1, 2, 3,2, 7) may be summarized:

n!1!(II)Pn!1!(I)P2n!2!(I)P2n!2!(II)P2n!2!(II) orbit with &&grazing
boundary''Pextremely long periodic orbits and chaosP(n#1)!2!(II)P(n#1)!1!(II)
orbit with &&grazing boundary''P(n#1)!1!(II)P(n#1)!1!(I).



Figure 13. Global bifurcation diagram for the system with k
m
"1, k

k
"1, f"0)1, b"0, f

20
"0.
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Period-doubling cascades of n!1 orbit do not occur, and grazing boundary
phenomena cause 2n!2!(II) orbit to undergo a sequence of transitions that change
it to (n#1)!1!(II) orbit. These transitions are not regular bifurcations but
arise from piecewise property of the map and singularity caused by the motion with grazing
boundary.

6. THE INFLUENCE OF SYSTEM PARAMETERS ON PERIODIC IMPACTS
AND BIFURCATIONS

The two-degree-of-freedom system studied here involves six system parameters: u, k
m
, k

k
,

f, b, fM
20

. Due to this relatively large number of parameters, the detailed in#uence of all
parameters on the system dynamics is not presented here. However, it is of interest to
analyze the in#uence of some system parameter on the system dynamics. Taking system
parameters k

m
"2, k

k
"5, f"0)1, b"0, f

2
"0 as criterion, we analyze the in#uence of

system parameters such as distribution of mass and sti!ness, damping ratio on harmonic
and subharmonic resonances. Thus, some bifurcation diagrams are presented. Global
bifurcation diagram is shown for u"0)5}10 in Figure 14(a). In most cases we observe the
typical behaviour, with periodic windows with one impact velocity, separated by other
periodic or chaotic regions. From these "gures we can observe that the period of the
motion with one impact in the periodic window number j is j times the period of the
forcing. Increased damping generally results in lower impact velocities and larger
regions of periodic windows with single-impact orbit as seen in Figure 14(b). Low
damping, Figure 14(c), leads to larger impact velocities. For low k

m
and large k

k
, the system

exhibits similar behaviour, and there exist larger regions of n!1 orbits; see Figure 14(d)
and 14(e). The number of periodic windows with single-impact orbit increases remarkably
for low k

k
, but regions of n!1 orbits shrink and areas of long periodic and chaotic motions

enlarge, see Figure 14(f ). Large k
m
, Figure 14(g), results in lower impact velocity, and

regions of n!1 orbits shrink and areas of long-periodic and chaotic motions enlarge
slightly. Parameters fM

10
and fM

20
satisfy the relationship: fM

10
#fM

20
"1. As fM

20
increases,

impact velocity of the mass M
1

decreases, and regions of chaotic motions enlarge; see
Figure 14(h). As the parameter b'0, the number of periodic windows with single-impact
orbit decreases. For example, there exist only period 1 single-impact and period
2 single-impact orbits for b"0.2; see Figure 14(i). (Only changed parameter is given in
Figure 14(b)}(i), and all the other parameters, not given, are the same as criterion
parameters.)



Figure 14. Global bifurcation diagrams of the plastic vibro-impact system: (a) k
m
"2, k

k
"5, f"0)1, b"0,

fM
20
"0; (b) f"0)2; (c) f"0)05; (d) k

m
"0)7; (e) k

k
"16; (f ) k

k
"1)5; (g) k

m
"20; (h) f

1
"0)3, fM

20
"0)7; (i) b"0)2.
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7. CONCLUSION

The motions of single-degree-of-freedom plastic vibro-impact oscillators were studied by
using one-dimensional maps, which are piecewise on circle [9}11]. Dynamics and
bifurcations of the oscillator considered in references [9, 10], in elastic vibro-impact case,
was investigated in reference [21]. It is found that periodic motions and their bifurcations of
the oscillator, in plastic impact case [9, 10], are distinct from those in elastic impact case
[21]. In general, the period-doubling cascades of single-impact orbits are existent, but
discontinued in elastic vibro-impact systems. On the perfectly plastic impact condition,
dynamics of the two-degree-of-freedom system with harmonic excitations and a constraint
may be represented by a three-dimensional map. The map consists of two parts, and one of
them, corresponding to n!1!(I) orbit, cannot be obtained in closed form like those of
single-degree-of-freedom plastic vibro-impact oscillators [9}11]; the other, corresponding
to n!1!(I) orbit, can be derived by using analytical method used in references [18, 20].
Stable n!1!(II) orbits may be veri"ed by the local stability analysis discussed in the
previous section. There exist singularities in the system like in the elastic vibro-impact
systems, which are caused by the motion with grazing boundary. Moreover, the map of the
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plastic vibro-impact system is piecewise. The in#uence of the piecewise property and
singularities on global bifurcations and transition to chaos is elucidated. It is found that the
vibro-impact system goes through complicated dynamic evolution beyond period-doubling
bifurcations with increase in the excitation frequency. Period-doubling bifurcations of n!1
orbit taking place in the plastic vibro-impact system are qualitatively very much di!erent
from those in elastic vibro-impact systems [20, 21]. Period-doubling bifurcations of
single-impact orbits are commonly existent in the plastic vibro-impact system, but the
period-doubling cascades do not occur under a smooth change in the excitation frequency.
The motions with grazing boundary result in that the period-doubling cascades of
single-impact orbits do not occur so that extremely long periodic and chaotic motions are
generated immediately. This means that a sequence of transitions occur via the motion with
grazing boundary so that they change a period 2n two-impact orbit to a period n#1
single-impact orbit. These transitions are not regular bifurcations but arise from two
respects of reasons, i.e., the piecewise property of the map and its singularity caused by the
motions with grazing boundary. The method of dynamical analysis of the model in Figure 1
can be applied to some vibratory impact machines and equipment, for example pile driver,
compacting and forming machinery, etc. Global dynamical analyses for plastic
vibro-impact systems have important signi"cance on optimization design of machinery
with plastic vibro-impact.
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APPENDIX A

The determination of n!1!(I) periodic solutions is based on the fact that they satisfy
the following set of periodicity and matching conditions
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The other symbols u
dj

, g
j
, t

ij
, A
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and B

j
are the same as those in the second chapter.

The existence of periodic impacts requires the condition
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We can obtain the "xed point X*"(xR
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)T of n!1!(I) orbit by inserting t"0
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We consider the perturbed motion of n!1!(I) orbit to determine the equation of map.
For simplicity of notation, the origin of time is chosen at the impact point. The origin of
h-co-ordinate is displaced to an impact point o

2
in Figure 2. Between two consecutive

impacts, the solutions of the perturbed motion are written in the form
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For the disturbed motion of n!1!(I) orbit, the dimensionless time is set to zero
directly after an impact, it becomes (2nn#Dh)/u just before the next impact, and
Dh"Dq@!Dq. Letting t

e
"(2nn#Dh)/u, the boundary conditions at two successive

impact points are expressed as
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Substituting boundary conditions (A12) into equation (A10) for t"0, we obtain
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Substituting boundary conditions (A12) into equation (A10) for t"t
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The conditions, under which there exist n!1!(I) "xed points, give
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Inserting equation (A21) into equation (A18), we get "nally the PoincareH map, which are
given by
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Linearizing the PoincareH map at the "xed point results in the matrix
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